

2

Mastering AI Agents

Preface
In our previous e-book, “Mastering RAG,” our goal was clear: building enterprise-grade
RAG systems, productionizing them, monitoring their performance, and improving them.
At the core of it, we understood how RAG systems enhance an LLM’s ability to work with
specific knowledge by providing relevant context.

In this e-book, we’re taking a step further and asking, “How do we use LLMs to
accomplish end-to-end tasks?” This singular question opens up a door: AI agents. A RAG
system helps an LLM provide accurate answers based on given context. An AI agent
takes that answer and actually does something with it — makes decisions, executes
tasks, or coordinates multiple steps to achieve a goal.

A RAG-enhanced LLM could help answer questions about policy details by pulling relevant
information. But an AI agent could actually process the claim end-to-end by analyzing the
documentation, checking policy compliance, calculating payments, and even coordinating
with other systems or agents when needed.

The ideas behind agents has existed for years. It can be a software program or another
computational entity that can accept input from its environment and take actions based
on rules. With AI agents, you’re getting what has never been there before: the ability to
understand the context without predefined rules, the capacity to tune decisions based on
context, and learning from every interaction. What you’re getting is not just a bot working
with a fixed set of rules but a system capable of making advanced decisions in real-time.

Companies have quickly adapted, adopted, and integrated AI agents into their workflows.
Capgemini’s research found that “10% of organizations already use AI agents, more than
half plan to use them in 2025 and 82% plan to integrate them within the next three years.”

https://www.galileo.ai/mastering-rag

3

Mastering AI Agents

This e-book aims to be your go-to guide for all things AI agents. If you’re a leader looking
to guide your company to build successful agentic applications, this e-book can serve
as a great guide to get you started. We also explore approaches to measuring how well
your AI agents perform, as well as common pitfalls you may encounter when designing,
measuring, and improving them.

The book is divided into five chapters:

Chapter 1 introduces AI agents, their optimal applications, and scenarios where they
might be excessive. It covers various agent types and includes three real-world use cases
to illustrate their potential.

Chapter 2 details three frameworks—LangGraph, Autogen, and CrewAI—with evaluation
criteria to help choose the best fit. It ends with case studies of companies using these
frameworks for specific AI tasks.

Chapter 3 explores the evaluation of an AI agent through a step-by-step example of a
finance research agent.

Chapter 4 explores how to measure agent performance across systems, task completion,
quality control, and tool interaction, supported by five detailed use cases.

Chapter 5 addresses why many AI agents fail and offers practical solutions for successful
AI deployment.

We hope this book will be a great stepping stone in your journey to build trustworthy
agentic systems.

- Pratik Bhavsar

Contents

Types of AI Agents

When to Use Agents?

When Not to Use Agents?

10 Questions to Ask Before You
Consider an AI Agent

3 Interesting Real-World Use
Cases of AI Agents

10 30

21
31

31

32

33

34

34

35

35

35

37

40

22

23

25

Chapter 1:
What are AI agents

Chapter 2:
Frameworks for
Building Agents

LangGraph vs. AutoGen vs.
CrewAI

Practical Considerations

What Tools and Functionalities Do
They Support?

How Well Do They Maintain the
Context?

Are They Well-Organized and Easy
to Interpret?

What’s the Quality of
Documentation?

Do They Provide Multi-Agent
Support?

What About Caching?

Looking at the Replay Functionality

What About Code Execution?

Human in the Loop Support?

Popular Use Cases Centered
Around These Frameworks

7/27 28/43

5

Mastering AI Agents

Requirements

Defining the Problem

Define the React Agent

State Management

Create the Graph

Create the LLM Judge

Use Galileo Callbacks

44

44

45

46

47

54

55

63

66

69

72

75

Chapter 3:
How to Evaluate Agents

44/61

Chapter 4:
Metrics for Evaluating
AI Agents

62/79

Case Study 1: Advancing the
Claims Processing Agent

Case Study 2: Optimizing the Tax
Audit Agent

Case Study 3: Elevating the Stock
Analysis Agent

Case Study 4: Upgrading the
Coding Agent

Case Study 5: Enhancing the Lead
Scoring Agent

6

Mastering AI Agents

Development Issues

LLM Issues

Production Issues

81

82

86

Chapter 5:
Why Most AI Agents Fail &
How to Fix Them

80/95

WHAT ARE AI
AGENTS?

01
CHAPTER

8

Mastering AI Agents

Let’s start by understanding what AI agents are and which tasks you should use them for
to maximize their potential.

AI agents are software applications that use large language models (LLMs) to
autonomously perform specific tasks, ranging from answering research questions to
handling backend services. They’re incredibly useful for tasks that demand complex
decision-making, autonomy, and adaptability. You might find them especially helpful in
dynamic environments where the workflow involves multiple steps or interactions that
could benefit from automation.

Salesforce estimates that salespersons spend 71% of their time on non-selling tasks (like
administrative tasks and manually entering data). Imagine the time that could have gone
into directly engaging with customers, developing deeper relationships, and ultimately
closing more sales. This is true across multiple domains and applications: finance, health
care, tech, marketing, sales, and more.

Let’s use an example to understand this better. Imagine you run an online retail business
and receive hundreds of customer inquiries every day about order statuses, product
details, and shipping information. Instead of answering each and every query yourself, you
can integrate an AI agent into your solution to handle these queries.

Here’s how it would typically work:

1. Customer Interaction
A customer messages your service asking, “When will my order ship?”

2. Data Retrieval
The AI agent accesses the order management system to find the specific order details.

3. Response Generation
Based on the data retrieved, the agent automatically provides an updates to the customer,
such as sending “Your order will ship tomorrow and you’ll receive a tracking link via email
once it’s on its way.”

What are AI agents?

https://www.salesforce.com/news/stories/ai-agents-statistics/#stateofcitations
https://www.salesforce.com/news/stories/ai-agents-statistics/#stateofcitations

9

Mastering AI Agents

The return to having an AI agent is multifold here:

• Super quick response time that keeps your customers happy
• Frees up your human staff to handle more complex queries and issues
• Improves your overall productivity and efficiency

Fig 1.1 is an example of how agents are leveraged for code generation.

Switch to Backup

OpenAI GPT-4Actions

Repository

Error <failure log>

Write <file> <fix>

Write <file> <content>

Retrieval signature

Run test

Run test

Content result

Success

Conversation

AI Agent Eval Environment

User

Fig 1.1: Automated AI-Driven Development using AI agents

10

Mastering AI Agents

Types of AI Agents
Now that we’re familiar with what AI agents are, let’s look at different types of AI
agents along with their characteristics, examples, and when you can use them.
See Table 1.1 below to get a quick idea of the types of AI agents and where and
when you can use them.

Name of the agent Key Characteristics Examples Best For

Fixed Automation: The
Digital Assembly Line

No intelligence, predictable
behavior, limited scope

RPA, email
autoresponders, basic
scripts

Repetitive tasks,
structured data, no need
for adaptability

LLM-Enhanced:
Smarter, but Not
Einstein

Context-aware, rule-
constrained, stateless

Email filters, content
moderation, support
ticket routing

Flexible tasks, high-
volume/low-stakes, cost-
sensitive scenarios

ReAct: Reasoning
Meets Action

Multi-step workflows,
dynamic planning, basic
problem-solving

Travel planners, AI
dungeon masters,
project planning tools

Strategic planning, multi-
stage queries, dynamic
adjustments

ReAct + RAG:
Grounded Intelligence

External knowledge
access, low hallucinations,
real-time data

Legal research tools,
medical assistants,
technical support

High-stakes decisions,
domain-specific tasks,
real-time knowledge
needs

Tool-Enhanced: The
Multi-Taskers

Multi-tool integration,
dynamic execution, high
automation

Code generation tools,
data analysis bots

Complex workflows
requiring multiple tools
and APIs

Self-Reflecting: The
Philosophers

Meta-cognition,
explainability, self-
improvement

Self-evaluating systems,
QA agents

Tasks requiring
accountability and
improvement

Memory-Enhanced:
The Personalized
Powerhouses

Long-term memory,
personalization, adaptive
learning

Project management AI,
personalized assistants

Individualized
experiences, long-term
interactions

Environment
Controllers: The World
Shapers

Active environment control,
autonomous operation,
feedback-driven

AutoGPT, adaptive
robotics, smart cities

System control, IoT
integration, autonomous
operations

Self-Learning: The
Evolutionaries

Autonomous learning,
adaptive/scalable,
evolutionary behavior

Neural networks, swarm
AI, financial prediction
models

Cutting-edge research,
autonomous learning
systems

Table 1.1: Types of agents and their characteristics

11

Mastering AI Agents

Predefined
Rule

Send Output /
Result

This level of AI agents represents the simplest and most rigid form of automation. These
agents don’t adapt or think—they just execute pre-programmed instructions. They are
like assembly-line workers in a digital factory: efficient but inflexible. Great for repetitive
tasks, but throw them a curveball, and they’ll freeze faster than Internet Explorer.
(See Table 1.2 below)

The fixed automation workflow (See Fig 1.2) follows a simple, linear path. It begins when
a specific input (like a file or data) triggers the system, which consults its predefined
rulebook to determine what to do. Based on these rules, it executes the required action
and finally sends out the result or output. Think of it as a digital assembly line where
each step must be completed in exact order, without deviation.

Fixed Automation –
The Digital Assembly Line

Table 1.2: Characteristics of a fixed automation agent

Fig 1.2: Workflow of a fixed automation agent

Feature Description

Intelligence No learning, adaptation, or memory.

Behavior Predictable and consistent, follows pre-defined rules.

Scope Limited to repetitive, well-defined tasks. Struggles with unexpected scenarios.

Best Use Cases Routine tasks, structured data, situations with minimal need for adaptability.

Examples
RPA for invoice processing, email autoresponders, basic scripting tools (Bash,

PowerShell).

Fixed Automation Agent

Input Trigger
Execute
Action

12

Mastering AI Agents

LLM
(contextual analysis)

Output /
Action

These agents leverage LLMs to provide contextual understanding and handle
ambiguous tasks while operating within strict boundaries. LLM-Enhanced Agents
balance intelligence and simplicity, making them highly efficient for low-complexity,
high-volume tasks. Take a look at their features below in Table 1.3.

The workflow below (Fig 1.3) shows how these smarter agents process information:
starting with the input, the agent uses LLM capabilities to analyze and understand
the input context. This analysis then passes through rule-based constraints that keep
the agent within defined boundaries, producing an appropriate output. It’s like having
a smart assistant who understands context but still follows company policy before
making decisions.

LLM-Enhanced –
Smarter, but Not Exactly Einstein

Table 1.3: Characteristics of an LLM-enhanced agent

Fig 1.3: Workflow of a LLM-enhanced agent

Feature Description

Intelligence
Context-aware; leverages LLMs to process ambiguous inputs with contextual

reasoning.

Behavior Rule-constrained; decisions are validated against predefined rules or thresholds.

Scope Stateless; no long-term memory; each task is processed independently.

Best Use Cases
Tasks requiring flexibility with ambiguous inputs, high-volume/low-stakes

scenarios, and cost-sensitive situations where "close enough" is sufficient.

Examples Email filters, AI-enhanced content moderation, customer support classification.

LLM-Enhanced Agent

Input Data
Rule-based
Constraint

13

Mastering AI Agents

Reasoning

repeat until desired outcome achieved
Output /
Action

ReAct agents combine Reasoning and Action to perform tasks that involve strategic
thinking and multi-step decision-making. They break complex tasks into manageable
steps, reasoning through problems dynamically and acting based on their analysis.
These agents are like your type-A friend who plans their weekend down to the minute.
Table 1.4 lists their characteristics.

The ReAct workflow starts with an Input Query and then enters a dynamic cycle between
the Reasoning and Action Phase, as you’ll see in Fig 1.4. Unlike simpler agents, it can
loop between thinking and acting repeatedly until the desired outcome is achieved before
producing the final Output/Action. Think of it as a problem solver that keeps adjusting its
approach - analyzing, trying something, checking if it worked, and trying again if needed.

ReAct –
Reasoning Meets Action

Table 1.4: Characteristics of a fixed ReAct agent

Fig 1.4: Workflow of a ReAct agent

Feature Description

Intelligence
Reasoning and action; mimics human problem-solving by thinking through a
problem and executing the next step.

Behavior
Handles multi-step workflows, breaking them down into smaller, actionable parts.
Dynamically adjusts strategy based on new data.

Scope Assists with basic open-ended problem-solving, even without a direct solution path.

Best Use Cases
Strategic planning, multi-stage queries, tasks requiring dynamic adjustments, and
re-strategizing.

Examples
Language agents solving multi-step queries, AI Dungeon Masters, project planning
tools.

Fixed Automation Agent

Input Trigger

Action Phase

14

Mastering AI Agents

Reasoning

repeat until desired outcome achieved
Output /
Action

Now, moving on to agents who are much more intelligent, we come to ReAct + RAG
agents that combine reasoning, action, and real-time access to external knowledge
sources. This integration allows them to make informed decisions grounded in accurate,
domain-specific data, making them ideal for high-stakes or precision-critical tasks
(especially when you add evaluations). These agents are your ultimate trivia masters with
Google on speed dial. See Table 1.5 to learn how this agent works.

Starting with an Input Query, this advanced workflow combines ReAct’s reasoning-action
loop with an additional Knowledge Retrieval step. The agent cycles between Reasoning,
Action Phase, and Knowledge Retrieval (See Fig 1.5) — consulting external sources as
needed — until it reaches the desired outcome and produces an Output/Action. It’s like
having a problem solver who not only thinks and acts but also fact-checks against reliable
sources along the way.

ReAct + RAG – Grounded Intelligence

Table 1.5: Characteristics of a ReAct + RAG agent

Fig 1.5: Workflow of a ReAct + RAG agent

Feature Description

Intelligence
Employs a RAG workflow, combining LLMs with external knowledge sources
(databases, APIs, documentation) for enhanced context and accuracy.

Behavior
Uses ReAct-style reasoning to break down tasks, dynamically retrieving information
as needed. Grounded in real-time or domain-specific knowledge.

Scope
Designed for scenarios requiring high accuracy and relevance, minimizing
hallucinations.

Best Use Cases
High-stakes decision-making, domain-specific applications, tasks with dynamic
knowledge needs (e.g., real-time updates).

Examples
Legal research tools, medical assistants referencing clinical studies, technical
troubleshooting agents.

ReAct + RAG Agent

Input Query

Knowledge
Retrieval

Action Phase

15

Mastering AI Agents

Reasoning

repeat until desired outcome achieved
Output /
Action

Tool-enhanced agents are versatile problem solvers that integrate multiple tools,
leveraging APIs, databases, and software to handle complex, multi-domain workflows.
They combine reasoning, retrieval, and execution for seamless, dynamic task
completion. Think of them as tech-savvy Swiss Army knives capable of combining
reasoning, retrieval, and execution seamlessly! (See Table 1.6)

Starting with an Input Query, the agent combines reasoning with a specialized tool loop.
After the initial reasoning phase, it selects the appropriate tool for the task (Tool Selection)
and then executes it (Tool Execution). This cycle repeats until the desired outcome is
achieved, leading to the final Output/Action. (See Fig 1.6)

Tool-Enhanced – The Multi-Taskers

Table 1.6: Characteristics of tool-enhanced agents

Fig 1.6: Workflow of tool-enhanced agents

Feature Description

Intelligence
Leverages APIs, databases, and software tools to perform tasks, acting as a multi-
tool integrator.

Behavior
Handles multi-step workflows, dynamically switching between tools based on task
requirements.

Scope
Automates repetitive or multi-stage processes by integrating and utilizing diverse
tools.

Best Use Cases
Jobs requiring diverse tools and APIs in tandem for complex or multi-stage
automation.

Examples
Code generation tools (GitHub CoPilot, Sourcegraph's Cody, Warp Terminal), data
analysis bots combining multiple APIs.

Tool Enhanced Agent

Input Query

Tool SelectionTool Execution

16

Mastering AI Agents

These agents think about their thinking. Self-reflecting agents introduce meta-
cognition—they analyze their reasoning, assess their decisions, and learn from mistakes.
This enables them to solve tasks, explain their reasoning, and improve over time,
ensuring greater reliability and accountability. (See Table 1.7)

Starting with an Input Query, the agent goes through a cycle of Reasoning and Execution,
but with a crucial additional step: Reflection. After each execution, it reflects on its
performance and feeds those insights back into its reasoning process. This continuous
loop of thinking, doing, and learning continues until the desired outcome is achieved,
producing the final Output/Action. This is evident in Fig 1.7.

Self-Reflecting – The Philosophers

Table 1.7: Characteristics of self-reflecting agents

Fig 1.7: Workflow of self-reflecting agents

Feature Description

Intelligence
Exhibits meta-cognition, evaluating its own thought processes and decision
outcomes.

Behavior
Provides explanations for actions, offering transparency into its reasoning. Learns
from mistakes and improves performance over time.

Scope Suited for tasks requiring accountability and continuous improvement.

Best Use Cases
Quality assurance, sensitive decision-making where explainability and self-
improvement are crucial.

Examples
AI that explains its reasoning, self-evaluating learning systems, quality assurance
(QA) agents.

Input Query
Output /
Action

Execution

Reasoning Reflection

Feedback Loop

When
desired

outcome
achived

17

Mastering AI Agents

Give an agent a little memory, and you have the ultimate personal assistant. Memory-
enhanced agents bring personalization to the forefront by maintaining historical context
and remembering user preferences, previous interactions, and task history. They act as
adaptive personal assistants, providing tailored experiences and continuous, context-
aware support. These agents remember your preferences, track your history, and
theoretically — would never (ever) forget your coffee order! (See Table 1.8)

Look at Fig 1.8: Starting with an Input Query, this agent first recalls relevant past
experiences and preferences (Memory Recall), then uses this context for Reasoning about
the current task. After deciding on a course of action, it executes it (Action/Execution),
updates its memory with new information (Memory Update), and produces the Output.

Memory-Enhanced –
The Personalized Powerhouses

Table 1.8: Characteristics of memory-enhanced agents

Fig 1.8: Workflow of memory-enhanced agents

Feature Description

Intelligence
Possesses long-term memory, storing and recalling past interactions, preferences,
and task progress.

Behavior
Provides context-aware personalization, adapting decisions and actions based on
user-specific data and history. Learns and improves over time.

Scope
Excels at tasks requiring individualized experiences, tailored recommendations, and
maintaining consistency across multiple interactions.

Best Use Cases Personalized assistance, long-term interactions, tasks spanning multiple sessions.

Examples
Project management AI with task history, customer service bots tracking
interactions, personalized shopping assistants.

Input Query
Memory
Update

Reasoning
Phase

Action /
Execution

Memory
Recall

Output

Updates Long-term Memory

18

Mastering AI Agents

Environment-controlling agents extend beyond decision-making and interaction—they
actively manipulate and control environments in real time. These agents are equipped
to perform tasks that influence the digital landscape or the physical world, making
them ideal for applications in automation, robotics, and adaptive systems. Think smart
thermostats, but on steroids! (See Table 1.9)

Observe the workflow in Fig 1.9 carefully. Starting with an Input Query, the agent first
observes its surroundings (Perception Phase), reasons about the current state and
required changes (Reasoning Phase), takes action to modify the environment (Action
Phase), and then receives feedback about the changes (Feedback Phase). This cycle
repeats until the desired goal is met, producing both an Output and changed system state.

Environment Controllers –
The World Shapers

Table 1.9: Characteristics of environment-controlling agents

Fig 1.9: Workflow of an environment-controlled agent

Feature Description

Intelligence
Autonomous learning; refines models and processes based on feedback, data, or
environmental changes without manual updates.

Behavior
Adaptive and scalable, adjusting to changing conditions and new tasks. Exhibits
evolutionary behavior, improving performance over time.

Scope
Suited for cutting-edge research and autonomous learning systems, offering high
potential but requiring careful monitoring.

Best Use Cases
Situations where autonomous learning and adaptation are crucial, such as complex
research, simulation, or dynamic environments.

Examples
Neural networks with evolutionary capabilities, swarm AI systems, autonomous
robotics, financial prediction models.

Input Query Action
Phase

Reasoning
Phase

Output +
Changed State

 Perception
Phase

Feedback
Phase

Iterate until goal met
Environment Control Loop

Goal achieved

19

Mastering AI Agents

The holy grail of AI agents: those that can improve themselves over time. They learn,
adapt, and evolve without needing constant babysitting. These agents improve
themselves over time, learning from interactions, adapting to new environments, and
evolving without constant human intervention. They combine elements of reasoning,
memory, environment control, and self-reflection with autonomous learning capabilities
to adapt and optimize their behavior.

Are they the future of AI? Potentially. Are they also terrifying? Without evaluations,
observation, regulation, and oversight, very much so.

From the workflow in Fig 1.10, you’ll realize how a self-learning agent are akin to an AI
researcher that gets smarter with every experiment, constantly refining its methods and
knowledge.

Starting with an Input Query, the agent enters a continuous cycle beginning with the
Learning Phase where it processes available data, moves to Reasoning to analyze it, then
takes Actions based on its analysis. The Feedback Phase evaluates results, leading to
an Evolution Phase where the agent adapts and improves its models. This cycle repeats
continuously, producing not just an Output but an evolved version of both the solution and
the agent itself.

Self-Learning – The Evolutionaries

Table 1.10: Self-learning agents’ characteristics

Feature Description

Intelligence
Autonomous learning; refines models and processes based on feedback, data, or
environmental changes without manual updates.

Behavior
Adaptive and scalable, adjusting to changing conditions and new tasks. Exhibits
evolutionary behavior, improving performance over time.

Scope
Suited for cutting-edge research and autonomous learning systems, offering high
potential but requiring careful monitoring.

Best Use Cases
Situations where autonomous learning and adaptation are crucial, such as complex
research, simulation, or dynamic environments.

Examples
Neural networks with evolutionary capabilities, swarm AI systems, autonomous
robotics, financial prediction models.

20

Mastering AI Agents

Fig 1.10: Workflow of a self-learning agent

Input Query
Evolution

Phase
Learning
Phase

Output +
Evolved Agent

Reasoning
Phas

Feedback
Phase

Action Phase

Environment Control Loop

Solution Ready

Continuous Iteration

What’s fascinating is that each type has its own sweet spot—there’s no “one-size-fits-
all” solution. The key is matching the right agent type to your specific needs, whether
you need the reliable consistency of fixed automation for routine tasks or the adaptive
intelligence of self-learning agents for cutting-edge research.

21

Mastering AI Agents

We’ve looked at the agent types and where each one excels. That said, you still need to
be able to gauge where you’ll need an AI agent. Agents are highly beneficial when tasks
require complex decision-making, autonomy, and adaptability. They excel in environments
where the workflow is dynamic and involves multiple steps or interactions that can benefit
from automation. You’ll see how workflows in different domains can benefit from the use of
AI agents in Table 1.11 below:

Domain Task Benefits of Using AI Agents

Customer Support

Handling queries, providing

real-time assistance, issue

escalation

Agents enhance the efficiency and customer

experience by offering timely and accurate

responses, allowing human staff to focus on more

complex issues.

Research and Data

Analysis

Gathering, processing, and

analyzing data

They autonomously provide deep insights from

large datasets, helping you understand patterns

without manual effort.

Financial Trading Real-time data processing
Agents excel in making quick decisions based on

rapidly-changing market conditions.

Education
Personalized learning

experiences

These agents adapt to each student’s learning

pace, offering tailored feedback and supporting

unique learning journeys effectively.

Software

Development

Code generation, debugging,

and testing

Agents streamline the development process by

handling repetitive tasks like coding and testing,

improving code quality, and reducing development

time. They also learn and improve over time, which

continually enhances their assistance.

Table 1.11: Domains and applications that can benefit from the use of AI agents

When to Use Agents?

22

Mastering AI Agents

Agents offer many advantages, but there are certain scenarios in which deploying them
might not be the best option.

If the tasks you’re dealing with are straightforward, occur infrequently, or require only
minimal automation, the complexity and cost of implementing AI agents might not make
sense for you. Simple tasks that existing software solutions can handle efficiently do not
necessarily benefit from the added intricacy of agent-based systems. In such cases,
sticking with traditional methods can be more efficient and cost-effective.

Also, if your tasks require deep domain-specific knowledge or expertise—like conducting
complex legal analyses, making intricate medical diagnoses, or handling high-stakes
decision-making in unpredictable environments—these are typically better left to
experienced professionals. When you rely solely on agents for these critical tasks, it can
lead to suboptimal or even harmful outcomes.

That said, fields like psychotherapy, counseling, or creative writing thrive on the nuances
of human emotion and the creative process—areas where agents largely fall short. In
these domains, the human touch is irreplaceable and essential for achieving meaningful
outcomes.

Implementing agents also requires a significant investment from you in terms of time,
resources, and expertise. If you’re running a small business or managing a project with
a tight budget, the costs of developing and maintaining these agents may not justify
the benefits. In highly regulated industries, your use of agents might be restricted due
to compliance and security concerns as well, and ensuring agents adhere to stringent
regulatory requirements can be very challenging and resource-intensive.

When Not to Use Agents?

23

Mastering AI Agents

Before you consider using AI agents, you’ll need to ask yourself a set of questions to help
you evaluate if it’s actually worth the time, capital, and resources you’ll be putting into it:

10 Questions to Ask Before
You Consider an AI Agent

Is the task simple and repetitive,
or does it involve complex
decision-making that could benefit
from automation?

Will the agent be handle large
volumes of data or queries where
speed and efficiency are crucial?

Is there a benefit to having a system
that learns from its interactions and
improves its responses or strategies
over time?

Is this a frequent task where
automation could save significant time
and resources, or is it a rare event
that might not justify the investment?

Are the conditions under which
the task is performed constantly
changing, requiring adaptive
responses that an AI can manage?

Is it critical that the task is performed
with high accuracy, such as in
medical or financial settings, where AI
might need to meet high standards?

01

03

05

What is the complexity
of the task?

What is the
expected volume of
data or queries?

Can the task benefit
from learning and
evolving over time?

02 How often does the
task occur?

04

06

Does the task require
adaptability?

What level of accuracy
is required?

24

Mastering AI Agents

Take time to evaluate these questions; this will help you better
determine if an AI agent fits your needs and how it could be

effectively implemented to enhance your operations or services.

Does the task require deep domain
knowledge, human intuition, or
emotional empathy that AI currently
cannot provide?

Are there specific industry regulations
or compliance issues that need to be
addressed when using AI?

Does the task involve sensitive
information that must be handled with
strict privacy and security measures?

Does the return on investment in
terms of time saved, efficiency
gained, and overall performance
outweigh the costs of implementing
and maintaining an AI system?

07

09

08

10

Is human expertise or
emotional intelligence
essential?

What are the regulatory
and compliance
requirements?

What are the
privacy and security
implications?

What is the cost-
benefit analysis?

25

Mastering AI Agents

Now that we’ve learned what agents are and when to and when not to use them, it’s time
to go through some interesting real-world use cases of AI agents.

Company:
Wiley

Problem:
Wiley faced challenges handling
spikes in service calls during peak
times, particularly at the start of new
semesters when thousands of students
use Wiley’s educational resources.

Solution:
Wiley invested in Salesforce’s Agentforce, an AI agent
designed to enhance customer service operations.
This integration has significantly improved case
resolution rates and faster resolution of customer
queries, especially during peak times, such as the
start of new semesters when demand spikes.

Need:
The company needed an
efficient customer service
system to manage the
increased volume and maintain
positive customer experiences.

ROI:
A 40%+ increase in case
resolution compared to
their previous chatbot, a
213% ROI, and $230K
in savings

AI Agent:
Agentforce by Salesforce

Use Case:
Customer service automation

3 Interesting Real-World
Use Cases of AI Agents

1. Wiley and Agentforce

https://www.salesforce.com/customer-stories/wiley/

26

Mastering AI Agents

Need:
There was a need for a solution that
could streamline clinical workflows
and improve documentation
accuracy while allowing providers
more time to interact with patients.

Company:
Oracle Health

Use Case:
Enhancing patient-
provider interactions

Problem:
Healthcare providers faced
documentation and time
management challenges during
patient visits, leading to burnout
and reduced patient engagement.

Solution:
Oracle Health developed its
Clinical AI Agent, which automates
documentation processes and
enhances patient-provider interactions
through a multimodal voice user
interface. This allows providers to
access patient information quickly and
generate accurate notes efficiently.

ROI:
AtlantiCare, using the Clinical AI
Agent, reported a 41% reduction
in total documentation time,
saving approximately 66 minutes
per day, which translates to
improved productivity and
enhanced patient satisfaction.

AI Agent:
Clinical AI Agen

2. Oracle Health and Clinical AI agent

https://www.oracle.com/news/announcement/oracle-clinical-ai-agent-2024-10-29/

27

Mastering AI Agents

Company:
Magid

Problem:
Magid, a leader in consumer intelligence
for media brands, needed to ensure
consistent, high-quality content in a fast-
paced news environment. The complexity
of diverse topics made it challenging
to uphold accuracy, and errors could
potentially lead to significant repercussions.

Solution:
Magid integrated Galileo’s real-time
observability capabilities into their
product ecosystem. This integration
provided production monitoring,
relevant metrics for tracking tone
and accuracy, and customization
options tailored to Magid’s needs.

Need:
A robust observability system
was essential for monitoring AI-
driven workflows and ensuring
the quality of outputs across
various clients. This scalability
was crucial for managing the daily
production of numerous stories.

ROI:
With Galileo, Magid achieved 100%
visibility over inputs and outputs,
enabling customized offerings
as they scale. This visibility helps
identify trends and develop client-
specific metrics, enhancing the
accuracy of news delivery.

AI Agent:
RAG-based system
powered with real-time
observability capabilities

Use Case:
Empowering newsrooms
with generative AI technology

3. Magid and Galileo

We’ll look at many more use cases across multiple
domains throughout the rest of this e-book. We’ll
examine how agents have driven greater

productivity, quicker resolutions, and helped
things get done faster.

In the next chapter, we’re going to learn features
of three prominent frameworks for building AI
agents. Lots of exciting stuff ahead!

https://www.galileo.ai/case-studies/magid-empowers-its-newsroom-clients-with-galileo
https://www.galileo.ai/case-studies/magid-empowers-its-newsroom-clients-with-galileo
https://magid.com/news-insights/embracing-ai-in-the-newsroom/

FRAMEWORKS FOR
BUILDING AGENTS

02
CHAPTER

29

Mastering AI Agents

CHAPTER 2
FRAMEWORKS FOR
BUILDING AGENTS
The first chapter examined what AI agents are and when to use them. Before we move on
to the frameworks you can use to build these agents, let’s do a quick recap.

AI agents are particularly useful for dynamic, complex environments like customer support
or data-heavy sectors such as finance, where they automate and speed up processes.
They’re also great for personalizing education and streamlining software development.

However, they are not ideal for straightforward tasks that traditional software efficiently
handles or for fields requiring deep expertise, empathy, or high-stakes decision making,
where human judgment is crucial. The cost and regulatory compliance may also make
them less viable for small projects or heavily regulated industries.

That said, the framework you choose to build these agents can significantly affect their
efficiency and effectiveness. In this chapter, we’ll evaluate three prominent frameworks for
building AI agents — LangGraph, Autogen, and CrewAI — to help you make an informed
choice.

30

Mastering AI Agents

LangGraph vs. Autogen vs. CrewAI

LangGraph is an open-source framework designed by Langchain to build stateful, multi-
actor applications using LLMs. Inspired by the long history of representing data processing
pipelines as directed acyclic graphs (DAGs), LangGraph treats workflows as graphs where
each node represents a specific task or function.

This graph-based approach allows for fine-grained control over the flow and state of
applications, making it particularly suitable for complex workflows that require advanced
memory features, error recovery, and human-in-the-loop interactions. LangGraph
integrates seamlessly with LangChain, providing access to various tools and models and
supporting various multi-agent interaction patterns.

Below are three frameworks you can consider when building AI agents:

LangGraph

Autogen is a versatile framework developed by Microsoft for building conversational
agents. It treats workflows as conversations between agents, making it intuitive for users
who prefer interactive ChatGPT-like interfaces.

Autogen supports various tools, including code executors and function callers, allowing
agents to perform complex tasks autonomously. The highly customizable framework
allows you to extend agents with additional components and define custom workflows.
Autogen is designed to be modular and easy to maintain, making it suitable for both simple
and complex multi-agent scenarios.

Autogen

CrewAI is a framework designed to facilitate the collaboration of role-based AI agents.
Each agent in is assigned specific roles and goals, allowing them to operate as a cohesive
unit. This framework is ideal for building sophisticated multi-agent systems such as multi-
agent research teams. CrewAI supports flexible task management, autonomous inter-
agent delegation, and customizable tools.

CrewAI

31

Mastering AI Agents

Practical Considerations

For practical consideration, let’s compare LangGraph, Autogen, and CrewAI across several
key aspects.

How easy are they to use?

Ease of use determines how quickly and efficiently you can start using a framework. It also
affects the learning curve and the time required to build and deploy agents.

Consider LangGraph. This framework visualizes workflows as graphs using directed
acyclic graphs (DAGs). You’ll find this approach intuitive if you’re familiar with data
processing pipelines. It makes it easier for you to visualize and manage complex
interactions. You might need a deeper understanding of graph theories, which could
initially steepen your learning curve.

Then there’s Autogen, which models workflows as conversations between agents. If you
prefer interactive, chat-based environments, this framework will likely feel more natural to
you. Autogen simplifies the management of agent interactions, allowing you to focus more
on defining tasks and less on the underlying complexities. This can be a great help when
you’re just starting out.

CrewAI, on the other hand, focuses on role-based agent design, where each agent has
specific roles and goals. This framework is designed to enable AI agents to operate as
a cohesive unit, which can be beneficial for building complex, multi-agent systems. It
provides a structured approach to defining and managing agents. It’s very straightforward
to get started with CrewAI.

Winner: Autogen and CrewAI have an edge due to their conversational approach and
simplicity.

What tools and functionalities do they support?

Tool coverage is an essential aspect you’ll want to consider when evaluating a framework.
It refers to the range of tools and functionalities that a framework supports, enhancing the
capabilities of your agents.

32

Mastering AI Agents

For instance, LangGraph offers robust integration with LangChain, which opens up a wide
array of tools and models for your use. It supports functionalities like tool calling, memory,
and human-in-the-loop interactions. This comprehensive integration allows you to tap
into a broad ecosystem, significantly extending your agents’ functionality. If your project
requires a rich toolkit for complex tasks, LangGraph’s capabilities might be particularly
valuable.

Moving on to Autogen, this framework stands out with its support for various tools,
including code executors and function callers. Its modular design is a key feature,
simplifying the process of adding and integrating new tools as your project evolves. If
flexibility and scalability are high on your list, Autogen’s approach lets you adapt and
expand your toolset as needed without much hassle.

Lastly, CrewAI is built on top of LangChain, which means it inherits access to all of
LangChain’s tools. It allows you to define and integrate custom tools tailored to your
specific needs. This capability is ideal if you’re looking to craft a highly customized
environment for your agents.

Winner: LangGraph and Crew have an edge due to their seamless integration with
LangChain, which offers a comprehensive range of tools. All the frameworks allow the
addition of custom tools.

How well do they maintain context?

Memory support is crucial for agents to maintain context across interactions, enabling
them to provide more coherent and relevant responses. There are different types of
memory that agents can use:

Memory Type Description

Short-Term Memory Keeps track of recent interactions and outcomes.

Long-Term Memory Stores insights and learnings from past interactions.

Entity Memory Focuses on capturing details about specific entities.

Contextual Memory Integrates short-term, long-term, and entity memories.

Table 2.1: Memory types that agents can use

33

Mastering AI Agents

LangGraph supports built-in short-term, long-term, and entity memory, enabling agents to
maintain context across interactions. It includes advanced features like error recovery and
the ability to revisit previous states, which are helpful for complex problem-solving.

Autogen employs a conversation-driven approach to support memory, enabling agents
to remember previous interactions and stay contextually aware. This setup ensures that
agents maintain a coherent context throughout their interactions, which is essential for
tasks that depend on continuity.

CrewAI features a comprehensive memory system that includes short-term, long-term, and
entity memory. This system allows agents to accumulate experiences and enhance their
decision-making capabilities over time, ensuring they can recall important details across
multiple interactions.

Winner: Both LangGraph and CrewAI have an edge due to their comprehensive memory
system, which includes short-term, long-term, and entity memory.

Are They Well-Organized and Easy to Interpret?

Structured output is vital for ensuring that the responses generated by agents are well-
organized and easily interpretable. Structured output can include JSON, XML, or other
formats that facilitate further processing and analysis.

LangGraph allows nodes to return structured output, which can be used to route to
the next step or update the state. This makes managing complex workflows easier and
ensures the output is well-organized. An ideal use case is a customer service system that
routes queries through different departments based on content analysis, urgency, and
previous interaction history.

Autogen supports structured output through its function-calling capabilities. Agents can
generate structured responses based on the tools and functions they use. This ensures
that the output is well-defined and can be easily processed by other components. A
coding assistant system where multiple specialized agents (code writer, reviewer, tester)
need to work together dynamically is a good use case to think of.

CrewAI supports structured output by allowing agents to parse outputs as Pydantic
models or JSON. This ensures that the output is well-organized and easily interpretable.
You can define the structure of the output to meet their specific requirements. For
example, consider a data processing pipeline in which multiple agents need to transform
and validate data according to specific schemas.

34

Mastering AI Agents

Winner: LangGraph and CrewAI have an edge due to their ability to define structured
output.

What’s the Quality of Documentation?

Documentation quality affects how easily developers can understand and use the
framework. Good documentation can reduce the learning curve and improve the overall
developer experience.

LangGraph provides comprehensive documentation, including detailed guides and
examples. The documentation is well-structured, making it easy to find the information
you need. It covers various aspects of the framework, from basic concepts to advanced
features.

Autogen has documentation with numerous examples and tutorials. The documentation
covers various aspects of the framework, making it accessible to beginners and advanced
users alike. It includes detailed explanations of key concepts and features.

CrewAI provides detailed documentation, including how-to guides and examples. The
documentation is designed to help you get started quickly and understand the framework’s
core concepts. It includes practical examples and step-by-step instructions.

Winner: All frameworks have excellent documentation, but it’s easy to find more examples
of LangGraph and CrewAI.

Do They Provide Multi-Agent Support?

Multi-agent support is crucial when you’re dealing with complex applications that involve
various interaction patterns among multiple agents. This includes:

• Hierarchical
• Sequential
• Dynamic interactions

When agents are grouped by tools and responsibilities, they tend to perform better
because focusing on a specific task typically yields better results than when an agent

35

Mastering AI Agents

must choose from many tools. Giving each prompt its own set of instructions and few-
shot examples can further boost performance. Imagine each agent powered by its own
finely-tuned large language model—this provides a practical framework for development,
allowing you to evaluate and improve each agent individually without affecting the broader
application.

LangGraph supports various multi-agent patterns, including hierarchical and dynamic
group chats. It lets you easily define complex interaction patterns between agents. Its
graph-based approach aids in visualizing and managing these interactions effectively. In
LangGraph, you explicitly define different agents and their transition probabilities as nodes
in a graph. This method gives you extensive control over constructing complex workflows,
which is essential for managing transition probabilities between nodes.

Autogen emerged as one of the first multi-agent frameworks, framing workflows more as
“conversations” between agents. This conversational model adds flexibility, allowing you
to define how agents interact in various patterns, including sequential and nested chats.
Autogen’s design simplifies the management of these complex multi-agent interactions,
enabling effective collaboration among agents.

CrewAI supports role-based interactions and autonomous delegation among agents. It
facilitates processes like sequential and hierarchical task execution, which are critical for
efficiently managing multi-agent interactions. This setup ensures that agents can work
together seamlessly to achieve common goals. CrewAI provides a higher-level approach
than LangGraph, focusing on creating cohesive multi-agent “teams.”

Winner: LangGraph has an edge due to its graph-based approach, which makes it easier
to visualize and manage complex interactions.

What About Caching?

Caching is critical for enhancing agent performance by reducing latency and resource
consumption. It does this by storing and reusing previously computed results, which can
significantly speed up operations.

LangGraph supports caching through its built-in persistence layer. This allows you to save
and resume graph execution at any point. The caching mechanism ensures that previously
computed results can be reused, improving performance as well.

AutoGen supports caching API requests so they can be reused when the same request is
issued.

36

Mastering AI Agents

All tools in CrewAI support caching, which enables agents to reuse previously obtained
results efficiently. This reduces the load on external resources and speeds up the execution
time. The cache_function attribute of the tool allows you to define finer control over the
caching mechanism.

Winner: All frameworks support caching, but LangGraph and CrewAI might have an edge.

Looking at the Replay Functionality

Replay functionality allows you to revisit and analyze previous interactions, which is useful
for debugging and improving agent performance. This helps you understand the decision-
making process and identify areas for improvement.

LangGraph enhances your debugging and experimentation capabilities with its time travel
feature. This allows you to rewind and explore different scenarios easily. It provides a
detailed history of interactions, enabling thorough analysis and understanding of each step
in your process.

While Autogen does not offer an explicit replay feature, it does allow you to manually
update the state to control the agent’s trajectory. This workaround provides some level of
replay functionality, but it requires more hands-on intervention from you.

CrewAI provides the ability to replay from a task specified from the latest crew kickoff.
Currently, only the latest kickoff is supported, and it will only allow you to replay from the
most recent crew run.

Winner: LangGraph and CrewAI make it easy to replay with inbuilt capabilities.

What About Code Execution?

Code execution capabilities enable agents to perform complex tasks by writing and
executing code. This is particularly useful for tasks that require dynamic calculations or
interactions with external systems.

LangGraph integrates with LangChain to support code execution within its workflows.
You can define nodes specifically for executing code, which becomes part of the

37

Mastering AI Agents

overall workflow. This integration means you can seamlessly incorporate complex code
executions into your projects.

Autogen supports code execution through its built-in code executors. Agents can write
and execute code to perform tasks autonomously. The framework provides a safe
environment for code execution, ensuring that agents can perform tasks securely.

CrewAI supports code execution through customizable tools. You can define tools that
execute code and integrate them into the agent’s workflow. This provides flexibility in
defining the capabilities of agents and allows for dynamic task execution.

Winner: Autogen might have a slight edge due to its built-in code executors, but the other
two are also capable.

Human in the Loop Support?

Human-in-the-loop interactions allow agents to receive human guidance and feedback,
improving their performance and reliability. This is particularly important for tasks that
require human judgment or intervention.

LangGraph supports human-in-the-loop interactions through its interruption features. You
can pause the graph execution to provide feedback or make adjustments.

Autogen supports human-in-the-loop interactions through its three modes: NEVER,
TERMINATE, and ALWAYS.

CrewAI supports human-in-the-loop interactions by allowing agents to request human
input during task execution by setting the human_input flag in the task definition. When
enabled, the agent prompts the user for input before delivering its final answer.

Winner: All frameworks support humans in the loop in different ways.

How Well Do They Accommodate Customization?

Customization options determine how easily you can tailor the framework to your specific
needs and requirements. This includes the ability to define custom workflows, tools, and
interactions.

38

Mastering AI Agents

LangGraph provides fine-grained control over the flow and state of the application. You
can customize the behavior of nodes and edges to suit specific needs. The framework’s
graph-based approach also makes it easy to define complex workflows.

Autogen is customizable, allowing users to extend agents with additional components and
define custom workflows. The framework is designed to be modular and easy to maintain.

CrewAI offers extensive customization options, including role-based agent design and
customizable tools.

Winner: All the frameworks provide customization, but the mileage might vary.

How Good Are They At Scaling?

Scalability is a must to ensure that the framework can grow alongside your requirements.
The framework should sustain its performance and reliability as you incorporate more
agents, tools, and interactions. We have no winners here. All three frameworks offer the
flexibility to scale the system by adding agents, tools, and customizations according to
your needs.

Winner: It remains unclear which framework scales more effectively as more elements are
added. We recommend experimenting with them to get a better idea.

Let’s Compare Them All

Well, that’s a lot of information to process at once! Refer to the table below (Table 2.2) for a
quick overview of what we discussed in this chapter.

LangGraph excels
in scenarios where
workflows can be
represented as graphs

To sum it up:

Autogen is ideal
for conversational
workflows

CrewAI is designed
for role-based multi-
agent interactions

39

Mastering AI Agents

Criteria LangGraph Autogen CrewAI Final Verdict

Ease of Usage
Autogen and CrewAI are more intuitive due to
their conversational approach and simplicity.

Multi-Agent
Support

CrewAI excels with its structured role-based
design and efficient interaction management
among multiple agents.

Tool Coverage
LangGraph and CrewAI have a slight edge due
to their extensive integration with LangChain.

Memory Support
LangGraph and CrewAI are advanced in
memory support features, ensuring contextual
awareness and learning over time.

Structured
Output

LangGraph and CrewAI have strong support
for structured outputs that are versatile and
integrable.

Documentation
LangGraph and CrewAI offer extensive and
well-structured documentation, making it easier
to get started and find examples.

Multi-Agent
Pattern Support

LangGraph stands out due to its graph-based
approach, which makes it easier to visualize
and manage complex interactions.

Caching
LangGraph and CrewAI lead with
comprehensive caching mechanisms that
enhance performance.

Replay
LangGraph and CrewAI have inbuilt replay
functionalities, making them suitable for
thorough debugging.

Code Execution
Autogen takes the lead slightly with its innate
code executors, but others are also capable.

Human in the
Loop

All frameworks provide effective human
interaction support and are equally strong in this
criterion.

Customization
All the frameworks offer high levels of
customization, serving various requirements
effectively.

Scalability
All frameworks are capable of scaling effectively,
recommend experimenting with each to
understand the best fit.

Open source
LLMs

All frameworks support open-source LLMs.

Table 2.2: Overview of comparisons between LangGraph, Autogen, and
CrewAI on core features, technical capabilities, and development experience

40

Mastering AI Agents

Popular Use Cases Centered
Around These Frameworks

LangGraph
Chaos Labs has developed the Edge AI Oracle using LangChain and LangGraph for
enhanced decision-making in prediction markets. This system utilizes a multi-agent council
to ensure accurate, objective, and transparent resolutions. Each agent, ranging from data
gatherers to bias analysts and summarizers, plays a role in processing queries through a
decentralized network. This setup effectively reduces single-model biases and allows for
consensus-driven, reliable outputs in high-stakes environments.

Autogen
Built on top of Autogen, OptiGuide employs LLMs to simplify and enhance supply chain
operations. It integrates these models to analyze and optimize scenarios efficiently, such
as assessing the impact of different supplier choices. The system ensures data privacy
and doesn’t transmit proprietary information. Applied within Microsoft’s cloud infrastructure
for server placement, OptiGuide improves operational efficiency and stakeholder
communication and reduces the need for extensive manual oversight.

All the comparisons aside, here are some interesting use cases and collaborations
centered around LangGraph, Autogen, and CrewAI.

41

Mastering AI Agents

CrewAI
Waynabox has transformed travel planning by partnering with CrewAI, offering
personalized, hassle-free travel experiences. This collaboration utilizes CrewAI’s multi-
agent system to automatically generate tailored itineraries based on real-time data and
individual preferences. The integration of AI agents—handling activities, preferences, and
itinerary customization—allows travelers to enjoy unique adventures without the stress of
planning. This has helped simplify itinerary planning and enhanced Waynabox’s service to
create a more exciting and seamless travel experience .

In this chapter, we reviewed three frameworks, LangGraph, Autogen, and CrewAI,
and how they compare in different aspects, such as ease of use, multi-agent support,
and others (See Table 2.2). We also looked at examples of companies that have used
these frameworks in different scenarios and domains to ultimately focus on three
factors: reduction of manual “redundant” work, seamless operations, and productivity
improvement.

However, it is also imperative to consider the accuracy and reliability of AI agents. This
takes us to the next chapter, where we’ll examine the importance of careful monitoring
and feedback to ensure they provide reliable, well-sourced information, necessitating
evaluation.

HOW TO
EVALUATE AGENTS

03
CHAPTER

43

Mastering AI Agents

HOW TO
EVALUATE AGENTS
In the previous chapter, we examined three frameworks, LangGraph, Autogen, and
CrewAI, and some interesting use cases related to them.

The next important step in our journey is to understand how we can ensure the accuracy
and reliability of AI agents. Why is this important in the first place?

Evaluating AI agents is like checking the work of a new employee. You have to make
sure they’re doing their job correctly and reliably. Without regular checks and constructive
feedback, it’s tough to trust that the information the agents provide is accurate and helpful.

The best way to understand this is through an example. So, in this chapter, we’re going
to build a financial research agent, and we’ll cover how, much like humans, agents can be
taught to solve problems by first understanding the issue, making a plan, taking action,
and lastly, evaluating the result.

Let’s jump in!

44

Mastering AI Agents

Requirements

You can install these dependencies in a Python 3.11 environment.

pip install --quiet -U langgraph==0.2.56 langchain-community==0.3.9

langchain-openai==0.2.11 tavily-python==0.5.0 promptquality==0.69.1

To do so, sign up on Tavily and OpenAI to generate an API key. Save the keys in a .env file,
as shown below.

OPENAI_API_KEY=KKK

TAVILY_API_KEY=KKK

Defining the Problem

This chapter aims to build a financial research agent that “thinks” through and acts on
problems within a financial dataset. We can create a workflow that receives a question,
breaks it down into granular questions, searches the web using Tavily, and analyzes the
results.

To analyze the results, we use the ReAct agent, which works with the Tavily API to think
through and act on problems.

https://tavily.com/
https://platform.openai.com/docs/overview

45

Mastering AI Agents

Define the ReAct Agent

Within your IDE of choice, you can create a new Jupyter Notebook agent.ipynb.

We can import a prebuilt ReAct agent along with a web search tool called Tavily. While we
use the same agent for all steps in this example, you could use different agents for different
tasks. The best part? You can customize it further in later examples.

Look at Fig 3.1 to understand this better. This code sets up an AI-driven chat agent
named Fred, designed to function as a finance expert in 2024. Fred will use specific tools
and a planning framework to research and answer questions.

Fig. 3.1: Setting up the agent

https://langchain-ai.github.io/langgraph/reference/prebuilt/#langgraph.prebuilt.chat_agent_executor.create_react_agent

46

Mastering AI Agents

State Management
Now, let’s talk about how our agent keeps track of everything it needs to do. Think of it like
a smart to-do list system with three main parts.

First, we need a way to track what the agent plans to do. We’ll use a simple list of steps
written as text strings. This is like having a checklist of tasks the agent needs to complete.

Second, we want to remember what it has already done and what happened with each
task. For this, we’ll use a list of pairs (or tuples in programming terms). Each pair contains
both the action taken and what resulted from that action.

Lastly, we need to store two more important pieces of information: the original question that
was asked (the input) and the final answer once the agent finishes its work (the response).

This setup gives our agent everything it needs to function effectively.

In Fig 3.2, the PlanExecute class, a dictionary type, manages an execution process,
including input, plan steps, previous steps, and a response. The Plan class, using
Pydantic, defines a structured plan with steps that should be followed in a sorted order.

Fig. 3.2: Defining structures for managing and executing a sequential plan of actions

47

Mastering AI Agents

The planning step is where our agent will begin to tackle a research question. We’ll use a
special feature called function calling to create this plan. Let’s break down how it works.

First, we create a template for how our agent should think. We tell it that it’s a finance
research agent working in October 2024, and its job is to break down big questions into
smaller, manageable steps.

This template, called planner_prompt (See Fig 3.3), gives our agent clear instructions:
create a simple, step-by-step plan where each step leads logically to the next. Ensure that
no steps are missing or unnecessary. The final step should give us our answer.

The code sets this up by using ChatPromptTemplate, which has two main parts:
• A system message that explains the agent’s role and how it should plan
• A placeholder for the messages we’ll send it

Fig. 3.3: Guiding the agent to create a step-by-step plan that should lead to the correct
answer for a given objective

We then connect this template to ChatOpenAI using gpt-4o-mini with temperature set to
0 for consistent results. We take gpt-4o-mini being low on cost. The “structured output”
part means the plan will come out in a specific format we can easily work with.

When we test it with a real question like “Should we invest in Tesla given the current
situation of EVs?” the agent will create a detailed plan for researching this investment
decision. Each step will help gather the information needed to make an informed
recommendation about Tesla stock based on the current electric vehicle market
conditions. (See Fig 3.4)

https://python.langchain.com/docs/how_to/tool_calling/

48

Mastering AI Agents

Think of it like creating a research roadmap. We’re giving our agent the tools and
guidelines it needs to break down complex questions into manageable research tasks.

Fig. 3.4: Testing the agent with a question

Think of re-planning as the agent’s ability to adjust its strategy based on what it has already
learned. This is similar to how we might revise our research approach after discovering
new information. Let’s break down how this works.

First, we create two types of possible actions the agent can take:
• Response: When the agent has enough information to answer the user’s question
• Plan: When the agent needs to do more research to get a complete answer

The re-planning prompt is like giving our agent a structured way to think about what to do
next. It looks at three things:
• The original question (objective)
• The initial plan it made
• What steps have already been completed and what was learned

Using this information, the agent can decide to either:
• Create new steps to gather more needed information
• Give a final answer if it has enough information

The clever part is that the agent won’t repeat steps it’s already done. It focuses only on
what still needs to be investigated. This makes the research process more efficient and
prevents redundant work. It’s like having a research assistant who can intelligently adjust
their approach based on what they’ve already discovered.

This process helps our agent stay focused and efficient, only pursuing new information
when needed and knowing when it’s time to provide a final answer to the user.

49

Mastering AI Agents

We connect this re-planning ability to gpt-4o with the temperature set to 0. By setting the
temperature to 0 (See Fig 3.5), we force the model to generate the same response for the
same input. This helps us in making experiments reproducible.

Fig. 3.5: Replanner_prompt to review and update a given plan based on past actions

50

Mastering AI Agents

Create the Graph
Think of this graph as a roadmap that shows how our agent moves from one task to
another. We have three main functions that work together:

Fig. 3.6: Managing and executing using state-based logic

51

Mastering AI Agents

The execute_step function handles individual tasks. It takes the first item from our plan,
formats it properly, and has the agent work on it. It’s like giving a specific assignment to a
research assistant and getting back their findings. The agent keeps track of what it did and
what it learned.

The plan_step function is where everything begins. When given a question, it creates the
initial research plan. This is like creating a first draft of how to tackle the problem.

The replan_step function is where the agent decides what to do next. After completing a
task, it looks at what it has learned and either:
• Creates new steps if more research is needed
• Provides a final answer if it has enough information

Finally, we have the should_end function, which works like a checkpoint. It checks
whether we have a final answer ready. If we do, it ends the process. If not, it tells the agent
to continue working. You can see all these functions in the code snippet below, in Fig 3.6.
We use StateGraph to create a map that guides our agent through its research journey via
different actions it can take. Here’s how it flows:

First, we create the basic structure of the workflow with its three main stops:
• A planning station (“planner”)
• A research station (“agent”)
• A reviewing station (“replan”)

Then, we connect these stations in a logical order:
1. Everything starts at the planning station
2. From planning, the agent moves to doing research
3. After research, it goes to reviewing what it learned

At the reviewing station, the agent makes an important decision:
• Either continue with more research if needed
• Or finish up if it has a complete answer

This creates a smooth cycle in which the agent can continue researching until it has
everything it needs to answer the original question. It’s like having an intelligent research
assistant who knows when to dig deeper and when they’ve found enough information.

Finally, we compile this workflow into something we can easily use, just like any other tool
in our system. This makes our research agent ready to tackle real questions and provide
thorough, well-researched answers. See Fig 3.7.

52

Mastering AI Agents

Fig. 3.7: Creating the structure of the workflow

We can visualize the agent workflow with a mermaid diagram, as shown in Fig 3.8. See the
output in Fig 3.9.

Fig. 3.8: Visualizing the workflow using Mermaid Chart

https://www.mermaidchart.com/mermaid-ai

53

Mastering AI Agents

start

planner

replan

end

agent

_end_tools

agent

start

Fig. 3.9: Mermaid Chart workflow output

54

Mastering AI Agents

Create the LLM Judge
Next, we create a LLM judge to evaluate our agent’s performance. This ensures our
agents’ responses adhere to the given context and maintain relevance and accuracy.

The inbuilt scorers make it very easy to set up one for us. We use gpt-4o as our LLM for
the context adherence metric, with three evaluations per response for better to ensure
great evaluation accuracy. This scorer specifically looks at how well the agent sticks to the
context and provides relevant information.

Note that we’re using GPT-4o to evaluate a smaller AI model, which is like having an expert
oversee a novice’s work. GPT-4o, with its advanced capabilities and deep understanding
of language nuances, can be a reliable benchmark for judging the smaller model’s (in our
case, the 4o-mini) responses. See Fig 3.10.

Fig. 3.10: Implementing the LLM as Judge functionality

We then set up a Galileo evaluation callback that will track and record our agent’s
performance. It’s like having a quality control system that monitors our research process.
Next, we set some basic config for our agent:
• It can’t go through more than 30 cycles (recursion_limit).
• It must use our evaluation system (callbacks).

https://www.galileo.ai/blog/llm-as-a-judge-vs-human-evaluation
https://www.rungalileo.io/blog/mastering-rag-improve-performance-with-4-powerful-metrics

55

Mastering AI Agents

Use Galileo Callbacks
You’ll observe in Fig 3.11 that we’re using the Galileo callback, GalileoPromptCallback,
which is used to log the execution of chains in applications like Langchain.

With just two lines of code, we can get all the information needed to visualize and debug
the traces.

Fig. 3.11: Galileo Callback

We then run our agent with a specific test question. The system will process this question
through the research workflow we built earlier.

The code is set up to show us what’s happening at each step (that’s what the async for
loop does). It will print out each action and result as they happen, letting us watch the
research process in real-time.

Finally, we close our evaluation session with evaluate_handler.finish(). This saves all the
performance data we collected during the run to the Galileo Evaluate console so we can
see the chain visualization and the agent metrics. See Fig 3.12 and Fig 3.13.

Fig. 3.12: Closing the evaluation session

https://docs.rungalileo.io/galileo/gen-ai-studio-products/galileo-evaluate
https://www.galileo.ai/blog/metrics-for-evaluating-ai-agents

56

Mastering AI Agents

Fig. 3.13: Chain visualization

You can run several experiments to evaluate the research agent’s performance. For
instance, you can use the project dashboard to see how different test runs performed
based on key metrics (see Figure 3.14).

The standout performer was test-3, which earned the top rank with impressive results.

Performance of test-3:
• Context Adherence Score: 0.844 (High relevance to the research questions)
• Speed: Completed tasks in 84,039 milliseconds (Fastest among all tests)
• Responses Processed: 3 during the run
• Cost: $0.0025 per run (Low cost)

Overall Test Performances:
• Response Time Range: From 134,000 to 228,000 milliseconds
• Context Adherence Score Range: From 0.501 to 0.855
• Number of Responses: Ranged from 1 to 7 per test
• Cost Efficiency: Remained consistent across all runs, between $0.002 and $0.004 per

run

These results give valuable insights into our agent’s capabilities and help identify the most
effective configuration for future research tasks.

57

Mastering AI Agents

Fig. 3.14: Galileo’s dashboard that shows multiple runs

Now, you can go inside each test run to see agent executions (See Fig 3.15). The
dashboard reveals seven different research queries that our agent processed. Each query
focused on analyzing different companies’ financial metrics. Here’s what you’ll observe:

• The agent shows varying performance across different samples
• There’s an alert noting that six samples had latency greater than 10 seconds, which

suggests room for optimization.
• Average Latency for run: 210,623 ms
• Average Cost for run: $0.004 per execution

This detailed view helps you understand where the agent performs well and where it might
need improvements in terms of speed and accuracy.

Fig. 3.15: Detailed view for each test run

58

Mastering AI Agents

Looking at the trace view (Fig 3.16), you can see a detailed breakdown of an execution
chain where the context adherence was notably low at 33.33%. The system explanation
helps us understand why:

“The response has a 33.33% chance of being consistent with the context. Based on the
analysis, while some of the figures like those for later 2022 and 2023 are supported by
document references (such as Q3 2023 and Q4 2023), many earlier quarters’ figures
lack direct evidence from the documents or explicit mentions, leading to incomplete
support for claims.”

Fig. 3.16: Detailed breakdown of an execution chain to help with evaluation

59

Mastering AI Agents

This reveals two key issues in our agent’s performance:

To improve this, there are two possible main paths:

1. Improve the retrieval system:
• Make sure we’re gathering sufficient historical data.
• Expand the search scope to include earlier quarterly reports.
• Better source verification for historical data.

2. Enhance the prompts:
• Add explicit instructions to cite sources for all numerical claims.
• Include requirements to clearly distinguish between verified and unverified data.
• Add checks for data completeness before making comparisons.

Let’s take a quick look at what we learned in the chapter. We saw how our agent
implemented the ReAct (Reasoning and Acting) framework to:

• Break down complex questions into smaller steps
• Plan and execute research tasks systematically
• Re-evaluate and adjust its approach based on findings

We also explored the evaluation process using:

• An LLM judge (GPT-4) to assess response quality
• Metrics like context adherence, speed, and cost efficiency
• Galileo’s evaluation dashboard for performance tracking

That said, testing the finance research agent in this chapter teaches you something
very important and valuable: an AI is only as good as our ability to check its work. By
looking closely at how the agent performed, you could see exactly what it did well (like
finding recent data quickly) and what it struggled with (like backing up older numbers
with proper sources). The evaluation step helped spot these issues easily, showing us
where to improve the agent.

The next chapter is going to get even more interesting (plus, you have five solid use
cases to look at!) as we explore different metrics to evaluate the AI agents across four
dimensions: System Metrics, Task Completion, Quality Control, and Tool interaction.

The agent is citing recent data
(2022-2023) correctly with

proper sources.

However, it’s making claims
about earlier data without proper

documentation or references.

https://www.galileo.ai/

METRICS FOR
EVALUATING AI

AGENTS

04
CHAPTER

61

Mastering AI Agents

Before we explore metrics for evaluating AI, let’s recall our key insights into agent
evaluation. Using LLM-based judges (like GPT-4o) and robust metrics (such as context
adherence), we effectively measured an agent’s performance across various dimensions,
including accuracy, speed, and cost efficiency. We then set up Galileo’s evaluation callback
to track and record the agent’s performance.

This next chapter will explore various metrics for evaluating AI agents using five solid case
studies.

Let’s consider a document processing agent. While it might initially demonstrate strong
performance metrics, we may have to probe into several questions:

• Is it maintaining optimal processing speeds and resource usage?
• How consistently does it complete assigned tasks without human intervention?
• Does it reliably adhere to specified formatting and accuracy requirements?
• Is it selecting and applying the most appropriate tools for each task?

Through a series of hypothetical case studies, we’ll explore how organizations may
transform their AI agents into reliable digital colleagues using key metrics. These examples
will demonstrate practical approaches to:

• Improving task completion rates and reducing human oversight
• Enhancing output quality and consistency
• Maximizing effective tool utilization and selection

Metrics for
Evaluating AI Agents

62

Mastering AI Agents

You should remember that the goal isn’t perfection but establishing reliable, measurable,
and continuously improving AI agents that deliver consistent value across all four key
performance dimensions. See Fig 4.1

Fig 4.1: Four key performance dimensions to evaluate AI agents

63

Mastering AI Agents

Auto Pay Manual Check Appeal Queue

Case Study 1:
Advancing the Claims

Processing Agent

Fig 4.2: An overview of the Claims Processing System

Validate

Review

Validate

Verify

Process

Claim Validator

Coverage Check

Medical Claims Provider info Patient History

Network Check Eligibility Check

Payment Calculator

Claim Processing System Overview

Claim Decision

Validate

Validate

Clear Review Needed Denied

64

Mastering AI Agents

A healthcare network implemented an AI agent to automate insurance claims processing,
aiming to enhance efficiency and accuracy. However, this initiative inadvertently introduced
compliance risks, highlighted by several key issues:

• The AI agent struggled with complex claims, leading to payment delays and provider
frustration. Because of the inconsistency in handling these claims, claims processors
spent more time verifying the AI’s work than processing new claims.

• The error rate in complex cases raised alarms with the compliance team, especially
critical given the stringent regulatory demands of healthcare claims processing.

Functionality

The AI was designed to:

• Analyze medical codes
• Verify insurance coverage
• Check policy compliance
• Validate provider information
• Automatically assess claim completeness and compliance
• Calculate expected payments and generate preliminary approvals for straightforward

claims

Challenges

To counter these issues, the network focused on three key performance indicators to
transform their AI agent’s capabilities:

1. LLM Call Error Rate
• Problem: API failures during claims analysis led to incomplete processing and

incorrect approvals.
• Solution: Implementing robust error recovery protocols and strict state

management ensured accurate rollbacks and reprocessing.

2. Task Completion Rate
• Problem: The agent incorrectly marked claims as ‘complete’ without conducting

all necessary verifications.
• Solution: Mandatory verification checklists and completion criteria were introduced

to meet all regulatory requirements before finalizing claims.

65

Mastering AI Agents

3. Number of Human Requests
• Problem: The agent took on complex cases beyond its capability, such as

experimental procedures or cases requiring coordination of benefits across multiple
policies.

• Solution: Stricter escalation protocols automatically route high-risk cases to
human experts based on claim complexity and regulatory requirements.

4. Token Usage per Interaction
• Problem: Unnecessary inclusion of patient details in processing routine claims

heightened privacy risks.
• Solution: Strict data minimization protocols and context-cleaning practices were

adopted to ensure that only essential protected health information is used

Outcomes

The enhanced agent delivered:

• Faster claims processing
• Higher compliance accuracy
• Improved resource utilization
• Reduced rejection rates

66

Mastering AI Agents

Case Study 2:
Optimizing the Tax Audit Agent

Fig 4.3: An overview of the Tax Auditing System

Approve

Deep Scan Standard Check

Document Hub

Financial Records

Documentation Phase

ReceiptsTax Returns

Audit Queue

Quick Review

Tax Audit System Overview

Final

Assessment

Risk Detection

AI Engine

Pass

High Risk

Upload

Medium Risk

Upload

Feed

Analysis Phase

Issue

Low Risk

Upload

67

Mastering AI Agents

At a mid-sized accounting firm, their deployed AI audit agent created unexpected
workflow bottlenecks. While the agent effectively handled routine tax document
processing, the firm was concerned about three critical issues:

• Lengthy turnaround times for complex corporate audits
• Excessive computing costs from inefficient processing
• A growing backlog of partially completed audits requiring manual review

What should have streamlined their operations was instead causing senior auditors to
spend more time supervising the AI’s work than doing their specialized analysis. The firm
needed to understand why its significant investment in AI wasn’t delivering the anticipated
productivity gains.

Functionality

The AI audit agent was designed to:

• Process various tax documents, from basic expense receipts to complex corporate
financial statements.

• Automatically extract and cross-reference key financial data in corporate tax returns.
• Systematically verify compliance across multiple tax years.
• Validate deduction claims against established rules and flag discrepancies for review.
• For simpler cases, it could generate preliminary audit findings and reports.
• The system was integrated with the firm’s tax software and document management

systems to access historical records and precedents.

Challenges

The team focused on three critical metrics to reshape their agent’s capabilities:

1. Tool Success Rate
• Problem: The agent struggled with document processing efficiency, especially with

complex document hierarchies.
• Solution: Implementation of structured document classification protocols and

validation frameworks improved handling of complex documents.

2. Context Window Utilization
• Problem: The agent’s processing of tax histories in their entirety was suboptimal,

often missing connections between related transactions.

68

Mastering AI Agents

• Solution: Smart context segmentation was introduced, allowing the agent to
focus on relevant time periods and maintain historical context. This enhanced the
detection of subtle tax patterns.

3. Steps per Task
• Problem: The agent applied the same level of analysis intensity to all tasks,

regardless of complexity.
• Solution: Adaptive workflows were implemented to adjust analytical depth based

on the complexity of the task.

Outcomes

The refined capabilities of the AI agent led to:

• Decreased audit completion times
• Improved accuracy in discrepancy detection
• More efficient utilization of processing resources

69

Mastering AI Agents

Case Study 3:
Elevating the Stock Analysis Agent

Fig 4.4: An overview of the Stock Analysis System

Watch ListPriority Trade Exit Position

Integrate

Extract

Integrate

Process

Analyze

Market Context

Technical

Indicators

Price Data News Feed

Market Data

Financial Reports

Sentiment

Analysis

Fundamental

Metrics

Prediction Engine

Stock Analysis System Overview

Trading Signals

Integrate

Collect

Strong Buy Hold Sell

70

Mastering AI Agents

At a boutique investment firm, their AI-enhanced analysis service was under scrutiny as
clients questioned its value. Portfolio managers were overwhelmed by redundant analysis
requests and faced inconsistent reporting formats across client segments.

This situation undermined the firm’s competitive edge of providing rapid market insights
as analysts spent excessive time reformatting and verifying the AI’s outputs. The inability
of the AI to adjust its analysis depth based on varying market conditions resulted in either
overly superficial or unnecessarily detailed reports, compromising client confidence in the
service.

Functionality

The AI analysis agent was developed to:

• Process multiple data streams, including market prices, company financials, news
feeds, and analyst reports.

• Generate comprehensive stock analyses by evaluating technical indicators, assessing
fundamental metrics, and identifying market trends across different timeframes.

• Generate customized reports combining quantitative data with qualitative insights for
each analysis request.

• The system was integrated with the firm’s trading platforms and research databases,
providing real-time market intelligence.

Challenges

Through analyzing three crucial metrics, the team improved the AI agent’s performance:

1. Total Task Completion Time
• Problem: The agent applied a uniform analysis depth across all stock types,

regardless of their complexity.
• Solution: Adaptive analysis frameworks based on stock characteristics were

implemented to improve processing efficiency while maintaining insight quality.

2. Output Format Success Rate
• Problem: Inconsistencies in how the agent presented market analysis for different

user roles. Analysts and business managers received inappropriate levels of detail
for their specific needs.

71

Mastering AI Agents

• Solution: Role-specific output templates and better parsing of output requirements
were introduced, enabling the agent to format its analyses appropriately for different
audiences while maintaining analytical accuracy.

3. Token Usage per Interaction
• Problem: The agent inefficiently reprocessed entire documents for new queries,

such as analyzing a company’s quarterly earnings report multiple times for related
questions.

• Solution: Improved memory management and progressive analysis techniques
were adopted, allowing the agent to reuse relevant insights across related queries
while ensuring analytical precision.

Outcomes

The enhancements to the AI agent delivered:

• More precise market analysis
• Faster processing times
• Improved resource utilization

72

Mastering AI Agents

Case Study 4:
Upgrading the
Coding Agent

Fig 4.5: An overview of the Development Assistant System

Dev CheckAuto Apply Team Review

Process

Parse

Process

Review

Generate

Market Context

Syntax Check

New Code Git History

Code Analysis

Doc Strings

Pattern Analysis Context Building

Suggestion Engine

Development Assistant System Overview

Code Review

Process

Scan

Optimal Needs Review Complex

73

Mastering AI Agents

A software development company implemented an AI coding assistant to enhance
engineering productivity. However, rather than speeding up development cycles, the
assistant became a source of frustration due to frequent disruptions and unreliable
performance, especially during critical sprint deadlines.

Developers experienced delays as the agent struggled with large codebases and provided
irrelevant suggestions that failed to consider project-specific requirements. Additionally,
rising infrastructure costs from inefficient resource usage further exacerbated the situation,
prompting a need for transformative improvements to make the AI assistant a genuine
productivity tool.

Functionality

The AI coding assistant was designed to:

• Analyze codebases to provide contextual suggestions, identify potential bugs, and
recommend optimizations.

• Review code changes, ensuring compliance with project standards and generating
documentation suggestions.

• Handle multiple programming languages and frameworks, adapting recommendations
to specific project needs.

• The system integrated with common development tools and version control systems,
supporting developers throughout the development cycle.

Challenges

By optimizing three pivotal indicators, the team significantly enhanced the agent’s
capabilities:

1. LLM Call Error Rate
• Problem: Frequent API timeouts when processing large code files and connection

failures during peak usage.
• Solution: Robust error handling, automatic retries, and request queuing

mechanisms were implemented, greatly enhancing API call reliability and minimizing
workflow disruptions.

74

Mastering AI Agents

2. Task Success Rate
• Problem: Inconsistencies in the relevance and completeness of code suggestions.

The agent sometimes provided overly complex rewrites for simple style fixes or
inadequate details for required refactoring.

• Solution: Standardized response templates for various code issues, including style
guides, bug fixes, refactoring suggestions, and optimization recommendations,
were introduced, making the agent’s suggestions more consistently actionable.

3. Cost per Task Completion
• Problem: Inefficient resource allocation in debugging workflows, using the same

computational power for minor and major tasks.
• Solution: Tiered processing was implemented based on the complexity and scope

of code changes, optimizing resource usage while maintaining high analysis quality.

Outcomes

The optimizations delivered:

• Enhanced code analysis accuracy
• Improved suggestion relevance
• More efficient resource utilization

75

Mastering AI Agents

Case Study 5:
Enhancing the Lead
Scoring Agent

Fig 4.6: An overview of the Lead Scoring System

Nurture TrackSales Ready Keep Warm

Combine

Parse

Combine

Review

Feed

Signal Processor

Behavior Score

Website Visits Email Opens

Digital Signals

Social Clicks

Interest Score
Engagement

Score

ML Engine

Lead Scoring System Overview

Lead
Qualification

Combine

Scan

Strong Signals Medium Signals Weak Signals

76

Mastering AI Agents

A software development company implemented an AI lead scoring agent to optimize sales
strategies. Despite the promise of enhancing lead qualification efficiency, the agent was
initially ineffective, leading to misclassification of prospects and declining conversion rates.
Sales representatives found themselves pursuing low-potential leads due to outdated or
inaccurate scores, especially during peak times, which resulted in increased costs per
qualified lead and compromised growth targets.

Functionality

• Evaluate data from multiple sources like website interactions, email responses, social
media engagement, and CRM records to assess potential customers.

• Analyze company profiles, assess engagement patterns, and generate lead scores
based on predefined criteria.

• Automatically categorize prospects by industry, company size, and potential deal value,
updating scores in real-time as new information became available.

• Integrate with the company’s sales tools, providing sales representatives with prioritized
lead lists and engagement recommendations.

Challenges

1. Token Usage per Interaction
• Problem: The agent repetitively generated new analyses for similar company

profiles instead of leveraging existing insights.
• Solution: Implementation of intelligent pattern matching and context reuse

improved processing efficiency while maintaining lead quality assessment accuracy.

2. Latency per Tool Call
• Problem: Performance bottlenecks arose from sequential database querying

patterns, causing delays.
• Solution: Introduction of parallel processing and smart data caching transformed

the agent’s analysis speed.

3. Tool Selection Accuracy
• Problem: The agent inefficiently selected between similar analysis methods, using

more computationally expensive tools for basic tasks.

77

Mastering AI Agents

• Solution: Developing smarter selection criteria allowed the agent to match tool
complexity with the analysis needs, using simpler tools for straightforward tasks
and reserving intensive tools for complex cases.

Outcomes

• Faster prospect analysis processing
• Higher lead qualification accuracy
• Improved resource utilization efficiency

These use cases reveal a crucial truth: effective AI agents require careful
measurement and continuous optimization. As these systems become more
sophisticated, the ability to measure and improve their performance becomes increasingly
important.

Here’s a quick takeaway:
• Metric-driven optimization must align with business objectives
• Human workforce transformation is crucial for AI success
• Clear outcome targets drive better optimization decisions
• Regular measurement and adjustment cycles are essential
• Balance between automation and human oversight is critical

WHY MOST
AI AGENTS FAIL

& HOW TO FIX THEM

05
CHAPTER

79

Mastering AI Agents

CHAPTER 5
WHY MOST AI AGENTS FAIL
& HOW TO FIX THEM
In the previous chapter, we looked at different metrics for evaluating our AI agents, namely
along four core dimensions: Technical efficiency, Task Completion, Quality Control, and
Tool interaction. In our journey, we’ve also seen how agents are powerful tools capable of
automating complex tasks and processes with many frameworks that make it possible to
build complex agents in a few lines of code. However, many AI agents fail to deliver the
expected outcomes despite their potential.

In this chapter, we’ll examine why agents fail, providing insights into common pitfalls and
strategies to overcome them.

80

Mastering AI Agents

Poorly Defined Prompts
• Define Clear

Objectives
• Craft Detailed

Personas
• Use Effective

Prompting

Evaluation Challenges
• Continuous

Evaluation
• Use Real-World

Scenarios
• Incorporate

Feedback Loops

Difficult to Steer
• Specialized Prompts
• Hierarchical Design
• Fine-Tuning Models

High Cost of Running
• Reduce Context Size
• Use Smaller Models
• Cloud-Based Solutions

Planning Failures
• Task Decomposition
• Multi-Plan Selection
• Reflection and

Refinement

Reasoning Failures
• Enhance Reasoning

Capabilities
• Fine-Tune LLMs with

Feedback
• Use Specialized Agents

Tool Calling Failures
• Define Clear Parameters
• Validate Tool Outputs
• Tool Selectio

VerificationLoops

Guardrails
• Rule-Based Filters &

Validation
• Human-in-the-Loop

Oversight
• Ethical & Compliance

Frameworks

Agent Scaling
• Scalable Architectures
• Resource Management
• Monitor Performance

Fault Tolerance
• Redundancy
• Automated Recovery
• Stateful Recovery

Infinite Looping
• Clear Termination

Conditions
• Enhance Reasoning &

Planning
• Monitor Agent Behavior

DEVELOPMENT
ISSUES

LLM
ISSUES

PRODUCTION
ISSUES

AI Agent Challenges and Solutions

81

Mastering AI Agents

Development Issues

Poorly Defined Task
or Persona

A well-defined task or persona is
essential for effectively operating your AI
agents. It clarifies the agent›s objectives,
constraints, and expected outcomes,
ensuring that your agent can make
appropriate decisions and perform
effectively. Without it, agents may
struggle to make appropriate decisions,
leading to suboptimal performance.

Define Clear Objectives

You should specify the goals,
constraints, and expected outcomes for
each agent.

Craft Detailed Personas

Develop personas that outline the
agents role, responsibilities, and
behavior for you.

Prompting

Use research-backed prompting
techniques to reduce hallucinations for
your agents.

Evaluation
Issues

Evaluation helps you identify weaknesses
and ensures your agents operate reliably
in dynamic environments. However,
evaluating agents› performance is
inherently challenging. Unlike traditional
software, where outputs can be easily
validated against expected results, agents
operate in dynamic environments with
complex interactions, making it difficult for
you to establish clear metrics for success.

Continuous Evaluation

Implement an ongoing evaluation system
to assess your agents performance and
identify areas for improvement.

Use Real-World Scenarios

Test your agents in real-world scenarios to
understand their performance in dynamic
environments.

Feedback Loops

Incorporate feedback loops to allow
for continuous improvement based on
performance data.

82

Mastering AI Agents

Task
Breakdown

Task
Implementation

Resource
Allocation

Quality
Control

LLM Issues

You can steer LLMs towards specific
tasks or goals for consistent and reliable
performance. Effective steering ensures
that agents can perform their intended
functions accurately and efficiently. LLMs
are influenced by vast amounts of training
data, which can lead to unpredictable
behavior, and fine-tuning them for specific
tasks requires significant expertise and
computational resources.

Specialized Prompts

Use specialized prompts to guide the LLM
toward specific tasks.

Hierarchical Design

Implement a hierarchical design where
specialized agents handle specific tasks,
reducing the complexity of steering a
single agent. (See Fig 5.1)

Fine-Tuning

Continuously fine-tune the LLM based
on task-specific data to improve
performance.

Fig 5.1: Hierarchical design with specialized agents performing specific tasks

Controller Agent

Planning Agent Research Agent Execution Agent

Data
Collection

Analysis

Difficult to Steer

Mastering AI Agents

https://www.galileo.ai/blog/optimizing-llm-performance-rag-vs-finetune-vs-both

83

Mastering AI Agents

High Cost of Running
Running LLMs, especially in production
environments, can be prohibitively
expensive. The computational resources
required for inference, particularly
for large models, can lead to high
operational costs. This makes it difficult
for organizations to scale their agent
deployments cost-effectively.

Reduce Context

Agents can run for a while in their
iterative loops. Introduce mechanisms to

use as low context as possible to reduce
the tokens.

Use Smaller Models

Where possible, use smaller models or
distill larger models to reduce costs.

Cloud Solutions

Use cloud-based solutions to manage
and scale computational resources
efficiently. Design a serverless system to
save wasting of resources. (See Fig 5.2.)

Components of Fig 5.2
• The SQS Queue acts as our request buffer.
• The Lambda Controller makes intelligent decisions about request handling.
• Small Model API for simple completions and basic tasks
• Medium Model API for moderate complexity tasks
• Large Model API for complex reasoning tasks
• Model Cache for storing frequently used responses to reduce API calls
• CloudWatch to monitor system health and costs

Fig 5.2: A serverless architecture where Lambda Controller makes
intelligent decisions about request handling

Lambda -
Small Tasks

Large Model
API

Medium Model
API

Small
Model API

Model Cache

Lambda -
Complex Tasks

Lambda -
Medium Tasks

SQS Queue

Lambda Controller

CloudWatch

API Gateway

84

Mastering AI Agents

Planning Failures
Effective planning is crucial for agents
to perform complex tasks. Planning
enables agents to anticipate future
states, make informed decisions, and
execute tasks in a structured manner.
Without effective planning, agents may
struggle to achieve desired outcomes.
However, LLMs often struggle with
planning, as it requires strong reasoning
abilities and the ability to anticipate
future states.

Task Decomposition

Break down tasks into smaller,
manageable subtasks.

Multi-Plan Selection

Generate multiple plans and select the
most appropriate one based on the
context.

Reflection and Refinement

Continuously refine plans based on new
information and feedback.and scale
computational resources efficiently.
Design a serverless system to save
wasting of resources. (See Fig 5.2.)

Fig 5.3: A simple illustration of how an agent
plans and executes complex task decomposition,
multi-plan selection, and continuous refinement

Task Analysis

Task Complete

Task Decomposition

Plan Generation

Plan Evaluation

Selected Plan

Execution

Subtask 1

Plan A

Subtask 1

Plan B

Subtask 1

Plan C

Complex Task Input

Reflection

Success

Feedback
Loop

85

Mastering AI Agents

Reasoning Failures
Reasoning is a fundamental capability
that enables agents to make decisions,
solve problems, and understand
complex environments. Strong
reasoning skills are essential for agents
to interact effectively with complex
environments and achieve desired
outcomes. LLMs lacking strong
reasoning skills may struggle with tasks
that require multi-step logic or nuanced
judgment. (See Fig 5.4)

Enhance Reasoning Capabilities

Use prompting techniques like Reflexion
to enhance the reasoning capabilities.
Incorporate external reasoning modules
that can assist the agent in complex
decision-making processes. These

modules can include specialized
algorithms for logical reasoning,
probabilistic inference, or symbolic
computation.

Finetune LLM

Establish training with data generated
with a human in the loop. Feedback
loops allow the agent to learn from its
mistakes and refine its reasoning over
time. You can use data with traces
of reasoning that teach the model to
reason or plan in various scenarios.

Use Specialized Agents

Develop specialized agents that focus
on specific reasoning tasks to improve
overall performance.

Fig 5.4: A simple illustration
of how you can enhance

the capabilities of an LLM

Initial Response

Specialized Module

Improved Answer

Human Feedback

Self-Review

Reasoning Check

Final Answer

User Question

Learning
Lo

ok
s

G
oo

d

Needs Improvement

Logic Helper For
Clear, Logic Path

Probability Helper For
Likely Different Outcomes

86

Mastering AI Agents

Tool Calling Failures
One key benefit of agent abstraction
over prompting base language models
is the ability to solve complex problems
by calling multiple tools to interact with
external systems and data sources.
Robust tool calling mechanisms ensure
agents can perform complex tasks by
leveraging various tools accurately and
efficiently. However, agents often face
challenges in effectively calling and
using these tools. Tool calling failures
can occur due to incorrect parameter
passing, misinterpretation of tool
outputs, or failures in integrating tool
results into the agent’s workflow.

Define Clear Parameters

Ensure that tools have well-defined
parameters and usage guidelines for
you.

Validate Tool Outputs

Implement validation checks to ensure
that tool outputs are accurate and
relevant.

Tool Selection Verification

Use a verification layer to check if the
tool selected is correct for the job.

Production Issues
Guardrails
Guardrails help ensure that agents
adhere to safety protocols and
regulatory requirements. This is
particularly important in sensitive
domains such as healthcare,
finance, and legal services, where
non-compliance can have severe
consequences. Guardrails define the
operational limits within which agents
can function.

Implement rule-based filters and
validation mechanisms to monitor and
control the actions and outputs of AI
agents.

Content Filters
Use predefined rules to filter
inappropriate, offensive, or harmful

content. For example, content filters can
scan the agent’s outputs for prohibited
words or phrases and block or modify
responses that contain such content.

Input Validation
Before processing, inputs received by
the agent must be validated to ensure
they meet specific criteria. This can
prevent malicious or malformed inputs
from causing unintended behavior.

Action Constraints
Define constraints on the actions that
agents can perform. For example, an
agent managing financial transactions
should have rules that prevent it
from initiating transactions above a
certain threshold without additional
authorization.

87

Mastering AI Agents

Incorporate human-in-the-loop
mechanisms to provide oversight and
intervention capabilities.

Approval Workflows:
Implement workflows where certain
actions or outputs require human
approval before execution. For example,
an agent generating legal documents
can have its drafts reviewed by a human
expert before finalization.

Feedback Loops:
Allow humans to provide feedback on
the agent’s performance and outputs.
You can use this feedback to refine the
agent’s behavior and improve future
interactions.

Escalation Protocols:
Establish protocols for escalating
complex or sensitive tasks to human
operators. For example, if an agent
encounters a situation it cannot handle,
it can escalate the issue to a human
supervisor for resolution.

Develop and enforce ethical and
compliance frameworks to guide the
behavior of AI agents.

Ethical Guidelines:
Establish ethical guidelines that outline
the principles and values the agent must
adhere to. These guidelines can cover
areas such as fairness, transparency,
and accountability.

Compliance Checks:
Implement compliance checks to ensure
that the agent’s actions and outputs
align with regulatory requirements and
organizational policies. For example,
an agent handling personal data must
comply with data protection regulations
such as GDPR.

Audit Trails:
Maintain audit trails that record the
agent’s actions and decisions. This
allows for retrospective analysis and
accountability, ensuring that any
deviations from ethical or compliance
standards can be identified and
addressed.

88

Mastering AI Agents

Agent Scaling
Scaling agents to handle increased
workloads or more complex tasks
is a significant challenge. As the
number of agents or the complexity of
interactions grows, the system must
efficiently manage resources, maintain
performance, and ensure reliability.

Scalable Architectures

Design architectures that can efficiently
manage increased workloads and
complexity. Implement a microservices
architecture where each agent or group
of agents operates as an independent
service. This allows for easier scaling
and management of individual
components without affecting the entire
system.

Resource Management

Integrate load balancers to distribute
incoming requests evenly across
multiple agents. This prevents any
single agent service from becoming
overwhelmed and ensures a more
efficient use of resources.

Monitor Performance

Implement real-time monitoring tools
to track each agent’s performance.
Metrics such as response time, resource
utilization, and error rates should be
continuously monitored to identify
potential issues. (See Fig 5.5)

Performance Tracker

Auto Scaler

AI Agent 1 AI Agent 2

User Requests

AI Agent 3

Monitoring

AI Agent Pool

Scale Up/Down

Load Balancer

Fig 5.5: An illustration that shows
how you can add monitoring and load
balancers for easy scale-up and down

89

Mastering AI Agents

Fault Tolerance
AI agents need to be fault-tolerant
to ensure that they can recover
from errors and continue operating
effectively. Without robust fault
tolerance mechanisms, agents may
fail to handle unexpected situations,
leading to system crashes or degraded
performance. (See Fig 5.6)

Redundancy

Deploy multiple instances of AI
agents running in parallel. If one
instance fails, the other instances can
continue processing requests without
interruption. This approach ensures high
availability and minimizes downtime.

Automated Recovery

Incorporate intelligent retry mechanisms
that automatically attempt to recover
from transient errors. This includes
exponential backoff strategies, where
the retry interval increases progressively
after each failed attempt, reducing
the risk of overwhelming the system.
Develop self-healing mechanisms that
automatically restart or replace failed
agent instances.

Stateful Recovery

Ensure that AI agents can recover their
state after a failure. This involves using
persistent storage to save the agent’s
state and context, allowing it to resume
operations from the last known good
state after a restart.

Primary Agent

Backup Agent 1 Backup Agent 2

Switch to Backup Process Task

Retry LogicSave State

Task Complete Persistent Storage

Your Task

Redundant
Agents

Success

Periodic

No Yes

Failure
Check
Health

Error
Occurs?

B
ackoff Tim

er

Fig 5.6: Fault-tolerant
mechanism for AI agents to
quickly recover from errors and
continue operating effectively

90

Mastering AI Agents

Infinite Looping
Looping mechanisms are essential for
agents to perform iterative tasks and
refine their actions based on feedback.
Agents can sometimes get stuck in
loops, repeatedly performing the same
actions without progressing toward their
goals. (See Fig 5.7)

Clear Termination Conditions

Implement clear criteria for success and
mechanisms to break out of loops.

Enhance Reasoning and Planning

Improve the agent’s reasoning and
planning capabilities to prevent infinite
looping.

Monitor Agent Behavior

Monitor agent behavior and adjust to
prevent looping issues.

Reasoning AdjustSuccess

Task Analysis

Planning

Reasoning

Loop Check

Progress

Terminate

Receive Task

Define Goal & Steps

Goal Achieved

Return Result Return Best Solution

Generate Solution

No Progress

New Approach
Check Progress

Under Max Steps Exceeds Max Steps

Fig 5.7: A simple
strategy to prevent

infinite looping

91

Mastering AI Agents

Through the above examples and workflow diagrams (Fig 5.1 to Fig 5.6), you’ll
notice that while building AI agents presents numerous challenges, understanding and
addressing these common failure points is necessary for success.

By implementing proper guardrails, ensuring robust error handling, and designing scalable
architectures, you can create agents that work reliably and provide real value in production
environments.

That said, remember that building effective agents is an iterative process.

Always start small, test thoroughly, and gradually expand your agent’s capabilities as you
learn from real-world usage. Pay special attention to the fundamentals we’ve covered—
from clear task definition and evaluation to proper planning and reasoning capabilities.
This will help you establish a strong foundation when you begin to experiment with your AI
agents.

92

Mastering AI Agents

Glossary
Term Description

Large Language Model (LLM)
An advanced AI model that can understand and generate human-like text by
predicting the next word in a sequence.

AI Agent
Software application powered by large language models that autonomously perform
specific tasks and makes complex decisions.

Agent-Based System
An approach where software agents work independently to solve problems through
decision-making and interactions.

Task Automation
The process of using AI to perform repetitive or complex tasks without human
intervention.

System Latency
The time delay between when an AI agent receives input and when it provides a
response.

Entity Memory
A specialized form of AI memory that maintains detailed information about specific
entities (people, organizations, concepts) across multiple interactions.

Human-in-the-Loop (HITL)
A system design approach that integrates human oversight and intervention points
within automated AI processes.

Multi-Agent Pattern
A structured approach to organizing multiple AI agents› interactions, including
hierarchical, sequential, and dynamic patterns.

Role-Based Agent Design
An architectural approach where AI agents are assigned specific roles with defined
responsibilities, tools, and interaction patterns within a larger system.

State Management
Systematically tracking and controlling an AI agent›s internal conditions, memory, and
context throughout its operation cycle.

Context Window Utilization
A metric measuring how efficiently an AI agent uses its available processing capacity
for analyzing and retaining information

LLM Call Error Rate
A critical reliability metric tracking the frequency of failed API requests and processing
errors when an AI agent interacts with its underlying language model.

Latency per Tool Call
A performance indicator measuring the time delay between an AI agent›s request to
use a specific tool and receiving the tool›s response.

93

Mastering AI Agents

Output Format Success Rate
A quality metric assessing how accurately an AI agent adheres to specified formatting
requirements and presentation standards across different user roles and contexts.

Steps per Task
An efficiency metric tracking the number of discrete operations an AI agent requires to
complete a given task.

Task Completion Rate
A comprehensive performance indicator measuring the percentage of assignments an
AI agent successfully completes without human intervention.

Tool Selection Accuracy
A metric evaluating how appropriately an AI agent chooses specific tools or methods
from its available toolkit based on task requirements and complexity.

Token Usage per Interaction
A resource efficiency metric tracking how many computational units (tokens) an AI
agent consumes during task processing

Hierarchical Design
A system architecture where specialized AI agents handle specific tasks, reducing the
complexity of steering a single agent.

Prompting Techniques
Research-backed methods to guide LLM behavior and reduce hallucinations in AI
agents.

Reflexion
A specialized prompting technique that enhances an AI agent›s reasoning capabilities
through self-reflection and improvement.

Serverless Architecture
A cloud-based system design where computational resources are dynamically
allocated based on AI agent workload demands.

Task Decomposition
The process of breaking down complex assignments into smaller, manageable
subtasks for AI agents to handle effectively.

Tool Calling
The mechanism by which AI agents interact with external systems and data sources
to solve complex problems through multiple tool interactions.

